
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2023, Vol. 84, No. 10, pp. 1177–1185.
c© The Author(s), 2023 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2023.
Russian Text c© The Author(s), 2023, published in Avtomatika i Telemekhanika, 2023, No. 10, pp. 48–58.

TOPICAL ISSUE

A Comprehensive Software Verification Technology

for Onboard Control Systems of Spacecraft

V. V. Kul’ba∗,a, E. A. Mikrin∗†, B. V. Pavlov∗,b, and S. K. Somov∗,c

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
e-mail: akulba@ipu.ru, bpavlov@ipu.ru, cssomov2016@ipu.ru

Received June 19, 2023

Revised July 18, 2023

Accepted August 2, 2023

Abstract—This paper conceptualizes the main principles of comprehensive software verification
for an onboard spacecraft control system. An optimal comprehensive verification strategy for
onboard software is selected by rigorously stating and solving the corresponding optimization
problem. Software verification methods with functional correctness indicators are proposed.

Keywords : spacecraft, software, onboard control system, comprehensive software verification

DOI: 10.25728/arcRAS.2023.99.27.001

1. INTRODUCTION

A wide variety of tasks performed by spacecraft, extreme conditions of spacecraft operation,
and different technologies and protocols of information interaction between onboard hardware el-
ements and software, including various sensors and indicators, determine the need to create new
approaches, methods, and technologies to support R&D works in the field of advanced space tech-
nology. The papers [1, 5], the preprint [2], and the books [3, 4] were devoted to the development
and implementation of modeling methods in the aerospace industry. An important place therein
was occupied by the issues of digital modeling, a relevant method for studying different aspects in
the operation of onboard spacecraft control systems (OSCSs), including the design, development,
and verification of their software [6, 7]. According to the experience of application of modern orga-
nizational, methodological, and technical solutions used to verify OSCS software, it is necessary to
develop basic principles of a comprehensive verification methodology for OSCS software [6]. The
solution of this problem is urgent for the effective development and verification of OSCS software
using software prototypes, early functional integration, and the iterative checking of software re-
quirements. This methodology is used to optimize the comprehensive software verification process
in terms of time and cost criteria considering various technological constraints.

2. SELECTING AN OPTIMAL COMPREHENSIVE VERIFICATION STRATEGY

Formal problem statements on selecting an optimal comprehensive verification strategy for OSCS
software often involve two optimality criteria: the minimum time of verification and the minimum
cost of verification. The general problem of selecting an optimal comprehensive verification strat-
egy is to determine the following elements: 1) an optimal partition of the software complex into
separate parts, 2) the set of necessary subprograms (mocks and drivers), and 3) a scenario to verify
the separate parts of the software complex. When stating the problem, constraints are used to
determine the admissible partitions and unions of a special graph Γ , whose vertices correspond to

† Deceased.

1177



1178 KUL’BA et al.

the program modules and whose arcs are control links between them. When developing tests and
localizing errors, graph models are used to detail the graph Γ . These models formalize the detailed
flowcharts of the software complex and, in addition, the detailed flowcharts of separate program
modules (PMs).

The set of different comprehensive verification strategies for OSCS software is defined as follows.
At the initial stage, it is necessary to determine the set of all admissible partitions of the graph Γ
into subgraphs. Autonomous testing is conducted for each resulting subgraph. Next, the set of
all admissible unions of the resulting subgraphs is determined. These unions are used for joint
software testing. Each comprehensive verification strategy is defined as follows. First, it is the set
of subgraphs pm = {p1, . . . , pl, . . . , pM} obtained by partitioning the graph Γ . Second, it depends
on the order in which these subgraphs are united. Uniting the subgraphs in a given order yields the
original graph structure p̃mn = {p̃mn

1 , . . . , p̃mn
k , . . . , p̃mn

N }, where p̃mn
N coincides with the graph Γ .

The objective of selecting an optimal comprehensive verification strategy is to find a parti-
tion pm

∗
of the graph Γ and a sequence of uniting the subgraphs p̃mn∗

that, when used together,
yield a comprehensive verification scenario with the optimal values of time and cost characteristics
of the verification process.

If the verification process involves the mn-strategy, the time and cost of comprehensive verifi-

cation consist of two components, T
p
mn

(
C

p
mn

)
and T

o
mn

(
C

o
mn

)
. The first component is the time

T
p
mn (and cost C

p
mn) of the autonomous verification of the subgraphs obtained by partitioning the

graph Γ for the mn-strategy. The second component is the time T
o
mn (and cost C

o
mn) of imple-

menting the uniting stages for these subgraphs and performing the subsequent joint verification of
the subgraphs for the mn-strategy. The time and cost of verifying autonomously the subgraphs
obtained by partitioning the graph Γ are given by

T̄ p
mn =

∑
ν

tνmn, C̄p
mn =

∑
ν

Cνmn,

where tvmn and Cvmn denote the time and cost of the autonomous verification of the νth subgraph
of the graph Γ .

When uniting the subgraphs, the time and cost characteristics of joint verification are given by

T
o
mn =

∑
k

bkmn, C
o
mn =

∑
k

Skmn,

where bkmn and Skmn denote the time and cost of joint verification at the kth subgraph uniting
stage.

The problem of determining an optimal verification strategy with the time criterion has the
following general statement: it is required to minimize the expression∑

mn

(
T

p
mn + T

o
mn

)
xmn

subject to the verification cost constraint∑
mn

(
C

p
mn + C

o
mn

)
xmn � C.

In this constraint,

xmn =

{
1 if the mn-strategy is chosen for comprehensive verification

0 otherwise.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



A COMPREHENSIVE SOFTWARE VERIFICATION TECHNOLOGY 1179

The constraint also includes a constant C, which specifies the maximum allowable cost of com-
prehensive verification.

In the process of solving this problem, possible partitions of the graph Γ into subgraphs are
found by selecting the composition of V groups of the program modules of the software complex,
where V is the number of program modules in the software complex of the onboard control system.
When solving the problem, it is required to observe the constraints on the admissible combinations
of program modules for each of V groups.

In the course of selecting a union of subgraphs from the subgraph set pm = {p1, . . . , pm, . . . , pM}
into the original graph Γ , it is required to determine the list of stages to unite V* non-empty
subgraphs into Γ . The maximum number of such stages must be equal to the number of non-
empty subgraphs V*.

However, if the number of program modules in the software complex (the number of software
components) is high, then the set of possible system verification strategies becomes very large as
well. Due to this fact, estimating the time and cost characteristics of system verification strategies
becomes an extremely resource-intensive and time-consuming task. To eliminate this difficulty,
we propose to find particular optimal software verification strategies: such problems are most
commonly encountered in practice.

We define the set P
p
of admissible partitions of the graph Γ into subgraphs as follows:

P
p
= {Pm} , m = 1,M.

Here, Pm = {pm1 , . . . , pmν , . . . , pmDm
} and pmν denote the mth partition and the νth subgraph, respec-

tively, and Dm is the number of subgraphs in the mth partition.

The set P
o
= {P̃mn}, (n = 1, Nm, m = 1,M ) defines the admissible unions of the graph Γ . The

element P̃mn =
{
p̃mn
1 , . . . , p̃mn

k , . . . , p̃mn
Fmn

}
of the set P

o
is the nth union under the mth partition

of the graph Γ . The values Nm and Fmn are the number of the resulting unions of subgraphs and
the number of uniting stages under the mth partition of the graph Γ .

For the nth union, the element p̃mn
k is defined as follows:

p̃mn
k =

⋃
v∈R1mn

k

pmv
⋃

i∈R2mn
k

pmi .

Here, R1mn
k is the index set of the subgraphs from Pm and R2mn

k is the index set of the
subgraphs from P̃mn included in the kth joint verification stage under the mth partition and the
nth union of the graph Γ .

On the one hand, the comprehensive verification strategy is determined by the partition of the
graph Γ into subgraphs Pm ∈ P

p
; on the other, by the union of the resulting subgraphs P̃mn ∈ P

p

into the original graph.

The time tν and cost Cν of the autonomous verification of each vth subgraph in a partition
consist of three components as follows: the time and cost (tnν , C

n
ν ) of preparing test data, the time

and cost (tpν , C
p
ν ) of executing the testing process, and the time and cost

(
tlocν , C loc

ν

)
of localizing

the errors detected during subgraph testing, i.e.,

tν = tnν + tpν + tlocν , Cν = Cn
ν + Cp

ν + C loc
ν ,

where

tnν = tgenν + tmock
ν + tdriν , Cn

ν = Cgen
ν + Cmock

ν + Cdri
ν .

These formulas have the following notations: tgenν and Cgen
ν are the time and cost of generating

test data for the vth subgraph, respectively; tmock
ν and Cmock

ν are the time and cost of developing

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



1180 KUL’BA et al.

mock subprograms to verify the vth subgraph, respectively; tdriν and Cdri
ν are the time and cost of

developing driver subprograms to verify the vth subgraph, respectively; tpν and Cp
ν is the time and

cost of carrying out tests for the vth subgraph, respectively; finally, tlocν and C loc
ν are the time and

cost of localizing errors detected when testing the vth subgraph, respectively.

An optimal system verification strategy can be found in two steps as follows. The first step
is to select an admissible partition of the graph Γ into subgraphs Pm ∈ P

p
for their autonomous

verification. The second step is to select an admissible union of these subgraphs from the set P
o

for joint verification. The two steps ensure the comprehensive verification process with minimum
time and cost under the existing time and cost constraints.

For the problem statement under consideration, we define the variable

ymn =

⎧⎨⎩1 if for the mth partition of the graph Γ the nth union is selected

0 otherwise.

This problem is solved using the following initial data:

1) the sets P
p
= {Pm} , m = 1,M and P

o
= {P̃mn}, n = 1, Nm, m = 1,M,

2) the time and cost characteristics of the autonomous and joint verification processes.

The time and cost of comprehensive verification are given by

T
k
= T

p
m + T

o
mn, C

k
= C

p
m + C

o
mn,

where T
p
m and C

p
m denote the time and cost of autonomous verification under the mth partition of

the graph Γ , respectively; T
o
mn and C

o
mn denote the time and cost of joint verification under the

mth partition of the graph Γ and the nth union of the graph Γ.

The time T
p
m and cost C

p
m of autonomous verification are given by

T̄ p
m =

∑
ν

(
tgenνm + tmock

νm + tdriνm + tlocνm

)
,

C̄p
m =

∑
ν

(
cgenνm + cmock

νm + cdriνm + clocνm

)
.

Let the test sets to debug the subgraphs pmν ∈ Pm be determined, and let the corresponding time
and cost characteristics be known for them. Then the time and cost characteristics of autonomous
debugging are calculated as

tgenνm =
Jνm∑
j=1

tjνm
gen, cgenνm =

Jνm∑
j=1

ĉjνm
gen,

tprogrm =
Jνm∑
j=1

tjνm
progr, cprogrνm =

Jνm∑
j=1

ĉjνm
progr,

tlocm =
Jνm∑
j=1

tjνm
locρ, clocνm =

Jνm∑
j=1

ĉjνm
locρ.

In these formulas, Jνm is the set of tests to verify the subgraph pmν .

The variables tmock
νm and cmock

νm specify the time and cost of developing all mock subprograms to
verify the subgraph pmν , i.e.,

tmock
νm =

Iνm∑
i=1

t̂mock
iν , cmock

νm =
Iνm∑
i=1

ĉmock
iν .

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



A COMPREHENSIVE SOFTWARE VERIFICATION TECHNOLOGY 1181

Here, Ivm is the number of mock subprograms to verify the subgraph pmv .

The time T
o
and cost C

o
of executing joint verification stages under the mth partition and the

nth union of the graph Γ are given by

T
o
=

Fmn∑
k=1

(
bnkmn + bprogrkmn + blockmn

)
,

C
o
=

Fmn∑
k=1

(
Sn
kmn + Sprogr

kmn + Sloc
kmn

)
.

Suppose that the subgraphs p̃mn
k ∈ P̃mn are verified using test sets with known time and cost

characteristics. Then the time and cost of executing the kth joint verification stage under the mth
partition and the nth union of the graph Γ are given by

bnkmn =
Jkmn∑
j=1

b̂genjkmn; bprogrkmn =
Jkmn∑
j=1

b̂progrjkmn; blockmn =
Jkmn∑
j=1

blocjkmnρ,

Sn
kmn =

Jkmn∑
j=1

Ŝgen
jkmn; Sprogr

kmn =
Jkmn∑
j=1

Ŝprogr
jkmn; Sloc

kmn =
Jkmn∑
j=1

Sloc
jkmnρ.

With all these expressions for the time and cost characteristics of the software verification
process, we formally state an optimization problem to find an optimal strategy for implementing a
comprehensive verification scenario in terms of the minimum total time:

∑
m

(∑
m

T
p
m

Nm∑
n=1

ymn +
Nm∑
n=1

T
o
mymn

)
→ min.

This problem is solved subject to the following constraints:

—the maximum allowable cost of implementing the verification process,

∑
m

(
C

p
m

∑
m

ymn +
Nm∑
n=1

C
o
mymn

)
� C;

—the set of M constraints on the variables ymn,

Nm∑
n=1

ymn = 1, m = 1,M.

The problem of finding an optimal comprehensive verification strategy with the minimum cost
criterion is formulated by analogy:

∑
m

(
C

p
m

∑
m

ymn +
Nm∑
n=1

C
o
mymn

)
→ min

subject to the time constraint imposed on the verification process,

∑
m

(∑
m

T
p
m

Nm∑
n=1

ymn +
Nm∑
n=1

T
o
mymn

)
� T ,

and the set of M constraints imposed on the variables ymn.

These problems belong to the class of linear mathematical programming problems widely used
in practice.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



1182 KUL’BA et al.

3. VERIFICATION METHODS FOR OSCS SOFTWARE
WITH FUNCTIONAL CORRECTNESS INDICATORS

At the early functional integration stage of OSCS components, functional correctness indicators
are used to assess the proper implementation of the functions of OSCS software. Each functionality
of the software complex is implemented on some set of data processing routes. Along these routes,
the input parameters of a function are transformed into one output result of this function or into a
set of its output results. In order to check the correct operation of a function fully, it is necessary
to check the entire set of data processing routes used by this function for a given set of its input
parameters. Correct operation is validated if the output results of functions completely coincide
with the reference results provided in the specifications of the program complex. Checking correct
operation on the entire set of input data and on all data processing routes is a task of very high
complexity. Therefore, one should select a bounded subset of data processing routes for their
checking. This subset must be sufficient to check the implementation of the main functions of the
software complex.

Nowadays, there are two approaches to check the correct operation of software: functional and
structural. The functional approach involves the “black box” representation of software. The
structural approach is based on checking the correct implementation of data processing routes;
when preparing tests, it considers the structural peculiarities of separate modules of the software
complex as well as the peculiarities of inter-module interaction within the complex. Both functional
and structural approaches have significant disadvantages from the standpoint of efficient software
verification implementation [2].

Due to this fact, we propose a method with the positive properties of both approaches. The
method implies selecting a set of tests with the functional correctness indicators of the program
complex that are necessary to check its correct operation. The quality of software operation is
assessed based on the results of carrying out a set of selected tests. Consider this method in detail.

Let F be the set of all functions of the software complex implementing all primary and auxiliary
functions. It is required to select a subset F < F of functions to be checked so that their cor-
rect operation will yield the desired values of the functional correctness indicators of the software
complex.

For the software complex, an input data domain E is defined. For each function Fj ∈ F , the
corresponding subset Ej ∈ E of this domain is defined as well. Each such function transforms data
of the input domain Ej ∈ E into the corresponding data of the output domain yj ∈ Y . Here, the

set yj contains all possible values of the output data for the function Fj

(
j = 1, J

)
.

The output results ykj ∈ Y of the software complex are obtained when implementing the sets

of routes Mjk

(
j = 1, J , k = 1,K

)
to process the data. Hence, to check the set of functions F of

the software complex, it is necessary to check the correct operation of the set of data processing
routes. Implementing these routes gives the necessary output results ykj for each function Fj from
the set F using the input data subsets Ej ∈ E.

A function Fj of the software complex will be considered checked if, for all output results

ykj ∈ Yj of this function, the correctness of passing the set Mjk

(
j = 1, J , k = 1,K

)
is successfully

checked for all data processing routes yielding the output results for the function Fj . The sets
Mjk ∈ Mj , k = 1,K, of such routes will be considered the sets Mj of backbone routes for the
function Fj . The correctness of obtaining the result of the j th function will be assessed using the
indicator

Nkj =
nchec
kj

ntot
kj

.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



A COMPREHENSIVE SOFTWARE VERIFICATION TECHNOLOGY 1183

In this formula, nchec
kj is the number of checked backbone routes and ngen

kj is the total number
of backbone routes forming the results ykj ∈ Yj. The total number of backbone routes equals the
cardinality of the set Mkj .

We will use the backbone route as the main element to be checked when assessing the functional
correctness indicator of software and the graph model Γ (V,C) of the enlarged flowchart of the
software complex when executing the verification scenario and determining the backbone paths for
the functions of the set F .

In the graph model, V is the vertex set of the graph Γ , which corresponds to the set of blocks
in the enlarged flowchart of the software complex, and C is the arc set of the graph. The arcs C
represent the transfer of control between the flowchart blocks. These blocks are separate procedures
and their aggregates or the program modules of the software complex. An arc between blocks i
and j means the transfer of control from the former to the latter. In the model under consideration,
vertex νi ∈ V of the graph Γ (V,C) is associated with the sets of its arguments Ai = {ain} and the
sets of its results Ri = {rij}.

An information processing route m in the graph Γ (V,C) is a sequence (v0, c0, v1, c1, . . . , cI−1, vI)
containing vertices and arcs. In this sequence, vi (0 � i � I) is a vertex of the graph Γ (V,C) and ci
(1 � i � I− 1) is an arc connecting vertices vi and vi+1. In turn, a sequence (v0, . . . , vI) of vertices
corresponds to the transformations implemented on a data processing route m. Such a sequence is
called a transformer of route m, and a sequence (c0, . . . , cI−1) of arcs corresponds to the conditions
to be satisfied on route m and is called the condition of route m.

For the result yjk ∈ Yj of a function Fj ∈ F, the backbone route mjk is a route whose transformer
(v0, . . . , vi) includes at least one of the possible sequences of external and internal information links.
These external and internal links must start at vertex v0 and end at vertex vi to obtain the result yjk.

4. SOFTWARE VERIFICATION FOR THE ONBOARD CONTROL SYSTEM
OF THE RUSSIAN SEGMENT OF THE ISS

In this section, as one example, the concept described above is used to verify software configu-
ration elements (SCEs) of the Russian Segment of the International Space Station (ISS) [3].

The following operations are carried out stage-by-stage to verify the SCEs:

(1) the autonomous testing of the software complex;

(2) the comprehensive verification of the SCEs on a ground verification bench;

(3) software verification jointly with C&C MDM (Command and Control Multiplexor DeMulti-
plexor, the onboard central computer of the US Segment and the entire ISS);

(4) the formal qualification tests of the SCEs.

The listed verification stages of the SCEs allow detecting, localizing, and eliminating the errors
arising in the software verification process as well as confirming software operability and assessing
software compliance with the technical specifications.

The autonomous testing of software is conducted based on an autonomous PC workstation
and on the SDDF complex (software project development tools). Testing is conducted using a
methodology that includes the following elements: the description of the testing procedure, initial
testing conditions, and test cases. After the software testing process is finished, it is handed over to
the configuration control group, which integrates the tested software into the SCEs of the onboard
central computer.

The comprehensive verification of the SCEs is performed according to a special scenario to solve
the following tasks:

(1) quality checking for the operating system;

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



1184 KUL’BA et al.

(2) onboard control system software assembly and comprehensive verification in accordance with
the flight plan and the operating modes of the Russian Segment and the service module simul-
taneously with flight safety control (i.e., checking the correct implementation of all subgraphs
and the entire graph Γ );

(3) spot checks of the backbone routes corresponding to the most probable abnormal situations,
the localization of abnormal situations, and their elimination;

(4) checking the compliance of onboard control system software with the documents (ICD SSP
50 097);

(5) resource allocation control (memory, CPU time, and I/O channels).

Joint tests with C&C MDM were conducted on SITE-C, EGSE, and SVF, dedicated benches
with special test implementation scenarios. During the tests, the onboard software of both onboard
control systems (the US Segment and the Russian Segment) as well as the model software of both
onboard systems (the US Segment and the Russian Segment) were used.

Formal qualification tests or acceptance tests and docking tests is a process that verifies the
compliance of the SCEs of the onboard central computer with the requirement specification and
ICD.

A certain subset is selected from the set of tests conducted using the NKO ground verification
complex. This subset serves to verify the correctness of implementing a given set of backbone
routes. Upon completion of the formal qualification testing, the Customer signs the report that
the SCEs of the onboard central computer are ready for docking tests.

Docking tests were conducted in accordance with a dedicated methodology. The hardware
and software means of the onboard central computer undergo docking tests with real hardware
or its analogs using the NKO-2 ground verification complex. Docking tests of the hardware and
software means of the onboard central computers (the Russian Segment with the US Segment) were
conducted using the NKO-1 ground verification complex. They were carried out in accordance with
the NASA–RSA Phase 2-3 Bilateral Integration and Verification Plan (SSP50101). The hardware
and software means of the onboard central computer as part of the Zvezda service module (product
index 17KSM) were tested on complex bench No. 24008 and on the control and test station in a
required volume.

5. CONCLUSIONS

This paper has presented the existing experience as well as organizational, methodological, and
technical solutions concerning software verification for onboard spacecraft control systems. The
main features of a comprehensive software verification technology for onboard spacecraft control
systems have been described. This technology ensures effective software development and debug-
ging based on software prototypes, the iterative refinement of requirements, and early functional
integration. The proposed technology has been implemented within the computer-aided software
development and verification system for onboard spacecraft control systems. As a result, the total
number of errors in the process of software development and verification has been significantly
reduced for the Russian Segment of the ISS.

REFERENCES

1. Mikrin, E.A., Kul’ba, V.V., and Pavlov, B.V., Developing Models and Design Methods for Information
Management Systems in Space Vehicles, Autom. Remote Control , 2013, vol. 74, no. 3, pp. 348–357.

2. Mikrin, E.A., Kul’ba, V.V., Kosyachenko, S.A., Somov, D.S., and Gladkov, Yu.M., Kompleksnaya otra-
botka programmnogo obespecheniya bortovogo kompleksa upravleniya kosmicheskimi apparatami i imi-
tatsionnye modeli funktsionirovaniya bortovykh sistem i vneshnei sredy (Comprehensive Software Ver-
ification for an Onboard Spacecraft Control System and Simulation Models of Onboard Systems and

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023



A COMPREHENSIVE SOFTWARE VERIFICATION TECHNOLOGY 1185

Environment), Preprint of Trapeznikov Institute of Control Sciences, Russian Academy of Sciences,
Moscow, 2011.

3. Kul’ba, V.V., Mikrin, E.A., Pavlov, B.V., and Platonov, V.N., Teoreticheskie osnovy proektirovaniya
informatsionno-upravlyayushchikh sistem kosmicheskikh apparatov (Theoretical Foundations of Design-
ing Spacecraft Information and Control Systems), Moscow: Nauka, 2006.

4. Kurenkov, V.I. and Kucherov, A.S., Metody issledovaniya effektivnosti raketno-kosmicheskikh sistem.
Problemno-orientirovannye sistemy avtomatizirovannogo proektirovaniya (Methods for Studying the Ef-
ficiency of Rocket and Space Systems. Problem-Oriented Computer-Aided Design Systems), Samara:
Samara State Aerospace University, 2012.

5. Zelentsov, V., Kovalev, A., Okhtilev, M., Sokolov, B., and Yusupov, R., Creation and Application
Methodology of the Intelligent Information Technology of Complexity Objects Space and Ground Based
Monitoring, SPIIRAS Proceedings , 2013, vol. 5, no. 28, pp. 7–81.

6. Mikrin, E.A., Bortovye kompleksy upravleniya kosmicheskimi apparatami i proektirovanie ikh pro-
grammnogo obespecheniya (Onboard Spacecraft Control Systems and Their Software Development),
Moscow: Bauman Moscow State Technical University, 2003.

7. Mikrin, E.A., Sukhanov, N.A., Platonov, V.N., et al., Design Concepts of Onboard Control Complexes
for Automatic Spacecrafts, Control Sciences , 2004, no. 3, pp. 62–66.

This paper was recommended for publication by V.M. Glumov, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 10 2023


